An efficient method based on progressive interpolation for solving non-linear equations
نویسندگان
چکیده
منابع مشابه
Modified homotopy perturbation method for solving non-linear oscillator's equations
In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملA non-iterative method for solving non-linear equations
In this paper, using a hyperbolic tangent function tanhðbxÞ, b > 0, we develop a non-iterative method to estimate a root of an equation f(x) = 0. The problem of finding root is transformed to evaluating an integral, and thus we need not take account of choosing initial guess. The larger the value of b, the better the approximation to the root. Alternatively we employ the signum function sgnðxÞ ...
متن کاملAn efficient FHE based on the hardness of solving systems of non-linear multivariate equations
We propose a general framework to develop fully homomorphic encryption schemes (FHE) without using the Gentry’s technique. Initially, a private-key cryptosystem is built over Zn (n being an RSA modulus). An encryption of x ∈ Zn is a randomly chosen vector e such that Φ(e) = x where Φ is a secret multivariate polynomial. This private-key cryptosystem is not homomorphic in the sense that the vect...
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2016
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.05.007